资源类型

期刊论文 327

年份

2023 26

2022 38

2021 29

2020 43

2019 12

2018 12

2017 12

2016 17

2015 19

2014 16

2013 10

2012 21

2011 16

2010 10

2009 8

2008 9

2007 7

2006 3

2005 3

2004 2

展开 ︾

关键词

人工神经网络 2

土壤 2

基质吸力 2

微波遥感 2

抗生素 2

横沙东滩 2

膨胀土 2

重金属 2

风化砂 2

DX桩 1

SWAT模型 1

互花米草 1

井塔冬期快速施工成套技术 1

井帮位移 1

产流 1

京津冀 1

人工冻融土 1

传播风险 1

位移与滑动形式 1

展开 ︾

检索范围:

排序: 展示方式:

Enhanced electrokinetic remediation of chromium-contaminated soil using approaching anodes

Shucai LI, Tingting LI, Gang LI, Fengmei LI, Shuhai GUO

《环境科学与工程前沿(英文)》 2012年 第6卷 第6期   页码 869-874 doi: 10.1007/s11783-012-0437-4

摘要: As a new technology used for the cleaning of chromium-contaminated soil, worldwide interest in eletrokinetic (EK) remediation has grown considerably in recent times. However, owing to the fact that chromium exists as both cationic and anionic species in the soil, it is not an efficient method. This paper reports upon a study in which a process using approaching anodes (AAs) was used to enhance the removal efficiency of chromium by eletrokinetics. Two bench-scale experiments to remove chromium from contaminated soil were performed, one using a fixed anode (FA) and the other using AAs. In the AAs experiment, the anode moved toward the cathode by 7 cm every three days. After remediation, soil pH, total chromium, and fractionation of chromium in the soil were determined. The average removal efficiency of total chromium was 11.32% and 18.96% in the FA and AAs experiments, respectively. After remediation, acidic soil conditions throughout the soil were generated through the use of AAs, while 80% of the soil remained neutral or alkalic when using the FA approach. The acidic soil environment and high field intensity in the AAs experiment might have favored chromium desorption, dissolution and dissociation from the soil, plus the mobility of chromium in the soil was also enhanced. The results demonstrate that AAs used in the process of EK remediation can enhance the efficiency of chromium removal from soil.

关键词: approaching anodes     chromium-contaminated soil     electrokinetics     chromium fractionation    

Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminatedsoil

Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1353-7

摘要: Abstract • Separate reduction and sintering cannot be effective for Cr stabilization. • Combined treatment of reduction and sintering is effective for Cr stabilization. • Almost all the Cr in the reduced soil is residual form after sintering at 1000°C. This study explored the effectiveness and mechanisms of high temperature sintering following pre-reduction with ferric sulfate (FeSO4), sodium sulfide (Na2S), or citric acid (C6H8O7) in stabilizing hexavalent chromium (Cr(VI)) in highly contaminated soil. The soil samples had an initial total Cr leaching of 1768.83 mg/L, and Cr(VI) leaching of 1745.13 mg/L. When FeSO4 or C6H8O7 reduction was followed by sintering at 1000°C, the Cr leaching was reduced enough to meet the Safety Landfill Standards regarding general industrial solid waste. This combined treatment greatly improved the stabilization efficiency of chromium because the reduction of Cr(VI) into Cr(III) decreased the mobility of chromium and made it more easily encapsulated in minerals during sintering. SEM, XRD, TG-DSC, and speciation analysis indicated that when the sintering temperature reached 1000°C, almost all the chromium in soils that had the pre-reduction treatment was transformed into the residual form. At 1000°C, the soil melted and promoted the mineralization of Cr and the formation of new Cr-containing compounds, which significantly decreased subsequent leaching of chromium from the soil. However, without reduction treatment, chromium continued to leach from the soil even after being sintered at 1000°C, possibly because the soil did not fully fuse and because Cr(VI) does not bind with soil as easily as Cr(III).

关键词: Chromium     Heavy contaminated soil     Reduction     Sintering     Stabilization     Speciation    

Remediation of arsenic contaminated soil by sulfidated zero-valent iron

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1377-z

摘要:

• Sulfidation significantly enhanced As(V) immobilization in soil by zerovalent iron.

关键词: Soil     As(V)     Sulfidation     Zero-valent iron     Magnetic separation    

Microbial remediation of aromatics-contaminated soil

Ying Xu, Ning-Yi Zhou

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0894-x

摘要: Aromatics-contaminated soils were successfully remediated with adding single strains. Bacterial or fungal consortia were successfully used in the cases of bioaugmentation. Microbes combined with chemical or biological factors increase remediation efficiency. The environmental factors had appreciable impacts on the bioaugmentation. Aromatics-contaminated soil is of particular environmental concern as it exhibits carcinogenic and mutagenic properties. Bioremediation, a biological approach for the removal of soil contaminants, has several advantages over traditional soil remediation methodologies including high efficiency, complete pollutant removal, low expense and limited or no secondary pollution. Bioaugmentation, defined as the introduction of specific competent strains or consortia of microorganisms, is a widely applied bioremediation technology for soil remediation. In this review, it is concluded which several successful studies of bioaugmentation of aromatics-contaminated soil by single strains or mixed consortia. In recent decades, a number of reports have been published on the metabolic machinery of aromatics degradation by microorganisms and their capacity to adapt to aromatics-contaminated environments. Thus, microorganisms are major players in site remediation. The bioremediation/bioaugmentation process relies on the immense metabolic capacities of microbes for transformation of aromatic pollutants into essentially harmless or, at least, less toxic compounds. Aromatics-contaminated soils are successfully remediated with adding not only single strains but also bacterial or fungal consortia. Furthermore several novel approaches, which microbes combined with physical, chemical or biological factors, increase remediation efficiency of aromatics-contaminated soil. Meanwhile, the environmental factors also have appreciable impacts on the bioaugmentation process. The biostatistics method is recommended for analysis of the effects of bioaugmentation treatments.

关键词: Aromatics-contaminated soil     Bacteria     Bioaugmentation     Bioremediation     Fungi    

Global perspectives and future research directions for the phytoremediation of heavy metal-contaminatedsoil: A knowledge mapping analysis from 2001 to 2020

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1507-2

摘要:

• The overall global perspective of the PHMCS field was obtained.

关键词: Heavy metal-contaminated soil     Hot topics     Knowledge mapping analysis     Knowledge base     Phytoremediation    

Effects of reducing agent and approaching anodes on chromium removal in electrokinetic soil remediation

Xiaona WEI,Shuhai GUO,Bo WU,Fengmei LI,Gang LI

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 253-261 doi: 10.1007/s11783-015-0791-0

摘要: A soil remediation method combining in situ reduction of Cr(VI) with approaching anodes electrokinetic (AAs-EK) remediation is proposed. EK experiments were conducted to compare the effect of approaching anodes (AAs) and fixed electrodes (FEs) with and without sodium bisulfite (NaHSO ) as a reducing agent. When NaHSO was added to the soil before EK treatment, 90.3% of the Cr(VI) was reduced to Cr(III). EK experiments showed that the adverse effect of contrasting migration of Cr(III) and Cr(VI) species, which limits the practical application of this technique, was eliminated in the presence of the reducing agent. Furthermore, Tessier fractionation analysis indicated that the reducing agent changed the distribution of the chemical forms of Cr. The AAs-EK method was shown to acidize the soil as the anode moved toward the cathode and this acid front pushed the “focusing” region toward the cathode. After remediation, the pH of the soil was between 1.8 and 5.0 in AAs-EK experiments. The total Cr removal efficiency was 64.4% (except in the “focusing” region) when the reduction reaction was combined with AAs-EK method. We conclude that AAs-EK remediation in the presence of NaHSO is an appropriate method for Cr-contaminated soil.

关键词: chromium     reduction reaction     contrasting migration     approaching anode     electrokinetic    

Stabilization treatment of contaminated soil: a field-scale application in Shanghai, China

Changbo ZHANG, Qishi LUO, Chunnu GENG, Zhongyuan LI

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 395-404 doi: 10.1007/s11783-010-0271-5

摘要: Stabilization is one of the best demonstrated available technologies for treating toxic pollutants in soils and has been used worldwide but is rarely used for treatment of contaminated sites in China despite many bench-scale studies. Here, a field-scale application of stabilization treatment in Shanghai, China was summarized to demonstrate the whole engineering process and the key technical issues regarding stabilization of contaminated soil. A site contaminated with arsenic (As) and polycyclic aromatic hydrocarbons (PAHs), formerly used as a lighting plant in Shanghai, was chosen as the demonstration site. Stabilizing measures were taken to treat the contaminated soil to reuse the site for residential purposes. The whole engineering remediation process consisted of phase I environmental site assessment (ESA) and phase II ESA, quantitative human health risk assessment, remediation alternatives evaluation, bench-scale testing, remedial design, engineering implementation, and post-remediation assessment. A third party conducted evaluation monitoring indicated desirable results were achieved via the stabilization treatment. In addition, some technical obstacles related to soil stabilization treatment were discussed, including soil quality evaluation, stabilization effectiveness validation, and soil reuse assessment.

关键词: stabilization     contaminated soil     field-scale demonstration     technical obstacles    

steam-enhanced extraction and electrical resistance heating for efficient remediation of perchloroethylene-contaminatedsoil: Coupling merits and energy consumption

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1582-z

摘要:

● Coupling merits of SEE and ERH were explored by a laboratory-scale device.

关键词: Steam-enhanced extraction     Electrical resistance heating     Dense nonaqueous phase liquid     Soil remediation     Energy consumption    

Mitigation and remediation technologies for organic contaminated soils

Lizhong ZHU, Li LU, Dong ZHANG

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 373-386 doi: 10.1007/s11783-010-0253-7

摘要: Organic contaminated soils have become a widespread environmental problem, which may lead to a great threat to the quality of agricultural production and to human health. Physical, chemical, and biological technologies have been employed for the mitigation and remediation of organic contaminated soils. This paper reviews the progress of mitigation and remediation technologies for organic contaminated soils and suggests two different strategies for the mitigation of ‘slightly-contaminated’ agricultural soils and the remediation of ‘heavily-contaminated’ soils/sites, respectively. On this basis, directions for future research in this field are suggested.

关键词: organic contaminated soil     mitigation     remediation     bioavailability    

Review on remediation technologies for arsenic-contaminated soil

Xiaoming Wan, Mei Lei, Tongbin Chen

《环境科学与工程前沿(英文)》 2020年 第14卷 第2期 doi: 10.1007/s11783-019-1203-7

摘要: • Recent progress of As-contaminated soil remediation technologies is presented. • Phytoextraction and chemical immobilization are the most widely used methods. • Novel remediation technologies for As-contaminated soil are still urgently needed. • Methods for evaluating soil remediation efficiency are lacking. • Future research directions for As-contaminated soil remediation are proposed. Arsenic (As) is a top human carcinogen widely distributed in the environment. As-contaminated soil exists worldwide and poses a threat on human health through water/food consumption, inhalation, or skin contact. More than 200 million people are exposed to excessive As concentration through direct or indirect exposure to contaminated soil. Therefore, affordable and efficient technologies that control risks caused by excess As in soil must be developed. The presently available methods can be classified as chemical, physical, and biological. Combined utilization of multiple technologies is also common to improve remediation efficiency. This review presents the research progress on different remediation technologies for As-contaminated soil. For chemical methods, common soil washing or immobilization agents were summarized. Physical technologies were mainly discussed from the field scale. Phytoextraction, the most widely used technology for As-contaminated soil in China, was the main focus for bioremediation. Method development for evaluating soil remediation efficiency was also summarized. Further research directions were proposed based on literature analysis.

关键词: Arsenic     field-scale     Immobilization     Phytoextraction     Soil washing    

Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds

Jun QIAO, Chengdong ZHANG, Shuiming LUO, Wei CHEN

《环境科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 293-304 doi: 10.1007/s11783-013-0561-9

摘要: This study evaluated the effectiveness of different amendments—including a commercial NPK fertilizer, a humic substance (HS), an organic industrial waste (NovoGro), and a yeast-bacteria consortium—in the remediation of highly contaminated (up to 6% of total petroleum hydrocarbons) oilfield soils. The concentrations of hydrocarbon, soil toxicity, physicochemical properties of the soil, microbial population numbers, enzyme activities and microbial community structures were examined during the 90-d incubation. The results showed that the greatest degradation of total petroleum hydrocarbons (TPH) was observed with the biostimulation using mixture of NPK, HS and NovoGro, a treatment scheme that enhanced both dehydrogenase and lipase activities in soil. Introduction of exogenous hydrocarbon-degrading bacteria (in addition to biostimulation with NPK, HS and NovoGro) had negligible effect on the removal of TPH, which was likely due to the competition between exogenous and autochthonous microorganisms. Nonetheless, the addition of exogenous yeast-bacteria consortium significantly enhanced the removal of the aromatic fraction of the petroleum hydrocarbons, thus detoxifying the soil. The effect of bioaugmentation on the removal of more recalcitrant petroleum hydrocarbon fraction was likely due to the synergistic effect of bacteria and fungi.

关键词: bioremediation     petroleum hydrocarbon     biostimulation     bioaugmentation    

Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological

Yuebing SUN,Dan ZHAO,Yingming XU,Lin WANG,Xuefeng LIANG,Yue SHEN

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 85-92 doi: 10.1007/s11783-014-0689-2

摘要: Stabilization in the remediation of heavy metal contaminated soils has been gaining prominence because of its cost-effectiveness and rapid implementation. In this study, microbial properties such as microbial community and enzyme activities, chemical properties such as soil pH and metal fraction, and heavy metal accumulation in spinach ( ) were considered in assessing stabilization remediation effectiveness using sepiolite. Results showed that soil pH values increased with rising sepiolite concentration. Sequential extraction results indicated that the addition of sepiolite converted significant amounts of exchangeable fraction of Cd and Pb into residual form. Treatments of sepiolite were observed to reduce Cd and Pb translocation from the soil to the roots and shoots of spinach. Concentrations of Cd and Pb exhibited 12.6%–51.0% and 11.5%–46.0% reduction for the roots, respectively, and 0.9%–46.2% and 43.0%–65.8% reduction for the shoots, respectively, compared with the control group. Increase in fungi and actinomycete counts, as well as in catalase activities, indicated that soil metabolic recovery occurred after sepiolite treatments.

关键词: stabilization remediation     heavy metals     sepiolite     soil quality     spinach (Spinacia oleracea)    

Removal of high concentrations of polycyclic aromatic hydrocarbons from contaminated soil by biodiesel

Jinbao WU, Zongqiang GONG, Liyan ZHENG, Yanli YI, Jinghua JIN, Xiaojun LI, Peijun LI

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 387-394 doi: 10.1007/s11783-010-0269-z

摘要: Solubilizing experiments were carried out to evaluate the ability of biodiesel to remove polycyclic aromatic hydrocarbons (PAHs) from highly contaminated manufactured gas plant (MGP) and PAHs spiked soils with hydroxypropyl-β-cyclodextrin (HPCD) and tween 80 as comparisons. Biodiesel displayed the highest solubilities of phenanthrene (420.7 mg·L ), pyrene (541.0 mg·L ), and benzo(a)pyrene (436.3 mg·L ). These corresponded to several fold increases relative to 10% HPCD and tween 80. Biodiesel showed a good efficiency for PAH removal from the spiked and MGP soils for both low molecular weight and high molecular weight PAHs at high concentrations. Biodiesel was the best agent for PAH removal from the spiked soils as compared with HPCD and tween 80; as over 77.9% of individual PAH were removed by biodiesel. Tween 80 also showed comparable capability with biodiesel for PAH solubilization at a concentration of 10% for the spiked soils. Biodiesel solubilized a wider range of PAHs as compared to HPCD and tween 80 for the MPG soils. At PAH concentrations of 229.6 and 996.9 mg·kg , biodiesel showed obvious advantage over the 10% HPCD and tween 80, because it removed higher than 80% of total PAH. In this study, a significant difference between PAH removals from the spiked and field MGP soils was observed; PAH removals from the MGP soil by HPCD and tween 80 were much lower than those from the spiked soil. These results demonstrate that the potential for utilizing biodiesel for remediation of highly PAH-contaminated soil has been established.

关键词: polycyclic aromatic hydrocarbons (PAHs)     biodiesel     soil     removal     solubilization    

Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles

Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1263-8

摘要: Abstract ▪ Overviewed evolution and environmental applications of stabilized nanoparticles. ▪ Reviewed theories on particle stabilization for enhanced reactivity/deliverability. ▪ Examined various in situ remediation technologies based on stabilized nanoparticles. ▪ Summarized knowledge on transport of stabilized nanoparticles in porous media. ▪ Identified key knowledge gaps and future research needs on stabilized nanoparticles. Due to improved soil deliverability and high reactivity, stabilized nanoparticles have been studied for nearly two decades for in situ remediation of soil and groundwater contaminated with organic pollutants. While large amounts of bench- and field-scale experimental data have demonstrated the potential of the innovative technology, extensive research results have also unveiled various merits and constraints associated different soil characteristics, types of nanoparticles and particle stabilization techniques. Overall, this work aims to critically overview the fundamental principles on particle stabilization, and the evolution and some recent developments of stabilized nanoparticles for degradation of organic contaminants in soil and groundwater. The specific objectives are to: 1) overview fundamental mechanisms in nanoparticle stabilization; 2) summarize key applications of stabilized nanoparticles for in situ remediation of soil and groundwater contaminated by legacy and emerging organic chemicals; 3) update the latest knowledge on the transport and fate of stabilized nanoparticles; 4) examine the merits and constraints of stabilized nanoparticles in environmental remediation applications; and 5) identify the knowledge gaps and future research needs pertaining to stabilized nanoparticles for remediation of contaminated soil and groundwater. Per instructions of this invited special issue, this review is focused on contributions from our group (one of the pioneers in the subject field), which, however, is supplemented by important relevant works by others. The knowledge gained is expected to further advance the science and technology in the environmental applications of stabilized nanoparticles.

关键词: Stabilized nanoparticle     In-situ remediation     Organic contaminant     Soil remediation     Groundwater     Fate and transport    

Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated

Yan Ma, Xiaoming Du, Yi Shi, Deyi Hou, Binbin Dong, Zhu Xu, Huiying Li, Yunfeng Xie, Jidun Fang, Zheng Li, Yunzhe Cao, Qingbao Gu, Fasheng Li

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0870-x

摘要: Engineering practice of mechanical soil aeration in China is reviewed. MSA is a cost-effective technique for VOC-contaminated sites. Limitations of MSA application have been summarized. In recent years, many industrial enterprises located in the urban centers of China have been relocated owing to the rapid increase in urban development. At the sites abandoned by these enterprises, volatile organic compounds have frequently been detected, sometimes at high concentrations, particularly at sites abandoned by chemical manufacturing enterprises. With the redevelopment of sites and changes in land-use type associated with these sites, substantial amounts of contaminated soils now require remediation. Since China is a developing country, soil remediation warrants the usage of techniques that are suitable for addressing the unique challenges faced in this country. Land shortage is a common problem in China; the large numbers of contaminated sites, tight development schedules, and limited financial resources necessitate the development of cost-effective methods for land reclamation. Mechanical soil aeration is a simple, effective, and low-cost soil remediation technique that is particularly suitable for the remediation of large volatile organic compound-contaminated sites. Its effectiveness has been confirmed by conducting laboratory studies, pilot tests, and full-scale projects. This study reviews current engineering practice and developmental trends of mechanical soil aeration and analyzes the advantages and disadvantages of this technology for application in China as an emerging soil remediation market. The findings of this study might aid technology development in China, as well as assist other developing countries in the assessment and implementation of cost-effective hazardous waste site soil remediation programs.

关键词: Soil contamination     Volatile organic compound     Mechanical soil aeration     Engineering practice     China    

标题 作者 时间 类型 操作

Enhanced electrokinetic remediation of chromium-contaminated soil using approaching anodes

Shucai LI, Tingting LI, Gang LI, Fengmei LI, Shuhai GUO

期刊论文

Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminatedsoil

Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao

期刊论文

Remediation of arsenic contaminated soil by sulfidated zero-valent iron

期刊论文

Microbial remediation of aromatics-contaminated soil

Ying Xu, Ning-Yi Zhou

期刊论文

Global perspectives and future research directions for the phytoremediation of heavy metal-contaminatedsoil: A knowledge mapping analysis from 2001 to 2020

期刊论文

Effects of reducing agent and approaching anodes on chromium removal in electrokinetic soil remediation

Xiaona WEI,Shuhai GUO,Bo WU,Fengmei LI,Gang LI

期刊论文

Stabilization treatment of contaminated soil: a field-scale application in Shanghai, China

Changbo ZHANG, Qishi LUO, Chunnu GENG, Zhongyuan LI

期刊论文

steam-enhanced extraction and electrical resistance heating for efficient remediation of perchloroethylene-contaminatedsoil: Coupling merits and energy consumption

期刊论文

Mitigation and remediation technologies for organic contaminated soils

Lizhong ZHU, Li LU, Dong ZHANG

期刊论文

Review on remediation technologies for arsenic-contaminated soil

Xiaoming Wan, Mei Lei, Tongbin Chen

期刊论文

Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds

Jun QIAO, Chengdong ZHANG, Shuiming LUO, Wei CHEN

期刊论文

Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological

Yuebing SUN,Dan ZHAO,Yingming XU,Lin WANG,Xuefeng LIANG,Yue SHEN

期刊论文

Removal of high concentrations of polycyclic aromatic hydrocarbons from contaminated soil by biodiesel

Jinbao WU, Zongqiang GONG, Liyan ZHENG, Yanli YI, Jinghua JIN, Xiaojun LI, Peijun LI

期刊论文

Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles

Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin

期刊论文

Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated

Yan Ma, Xiaoming Du, Yi Shi, Deyi Hou, Binbin Dong, Zhu Xu, Huiying Li, Yunfeng Xie, Jidun Fang, Zheng Li, Yunzhe Cao, Qingbao Gu, Fasheng Li

期刊论文